EE103 HW#5 30Oct2017

5.2. Use the definition of the Fourier transform (5.1) to find the transform of the following time signals:

(a)
$$f(t) = ke^{-bt}[u(t) - u(t - t_0)], 0 < t_0 < \infty$$

(b) $f(t) = A \cos(\omega_0 t + \phi)$

Fourier transform $(5.1) \mathscr{F}\{f(t)\} = F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt$

5.6. Find and sketch the Fourier transform of the following time-domain signals:

(a)
$$Ae^{-\beta t}\cos(\omega_0 t)u(t)$$
, $Re\{\beta\} > 0$

2. (b) $A\sin(\omega_1 t) + B\cos(\omega_2 t)$

1.

3.

5.18. (a) The periodic signal $g_p(t)$ is shown in Figure P5.18. Find and sketch $G_p(\omega)$.

(b) How would the frequency spectrum change if the period of the waveform were doubled?

 $g_p(t)$

Figure P5.18

5.12. (a) For the electrical network shown in Figure P5.12, complete the following:

- (i) Determine the frequency response function.
- (ii) Sketch the magnitude and phase frequency response.
- (iii) Find the impulse response function for this network.

4.

Figure P5.12